If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-0.49=0
a = 1; b = 2; c = -0.49;
Δ = b2-4ac
Δ = 22-4·1·(-0.49)
Δ = 5.96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{5.96}}{2*1}=\frac{-2-\sqrt{5.96}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{5.96}}{2*1}=\frac{-2+\sqrt{5.96}}{2} $
| 7x-{x-12}=32-4x | | 4(1z+3)-4=8(1/2z+1) | | 132=2X3.14Xx | | 8000/12000=11/m | | 5r-7=2-8r | | ((5x)^2)+7x+2=1 | | ((5x)^2)+7x+2=0 | | 5-6y-9y=-15+5 | | 4x+(-8)=3x-9 | | (8+k)6=96 | | 7x(2x+5)=4x-9-x | | -2x+9=-5+7x | | 5-2n=n | | -7+4=w | | -10=x-(-7) | | 10y+6=2y+2 | | 3/2y=-12 | | 7(5)^x=33 | | r+1/7=7 | | 14b2-2=-36 | | a/5+13=13 | | k-7=32 | | x=52x+13= | | 5x-6x=35 | | x+10=9+3 | | (3.45x10^=(3))+(6.11x10^(3)) | | -11+x=35 | | 8v+6=14 | | 3.5=7.1-0.9x | | x+(-6)=34 | | r/2+4=15 | | 3(4y+5)=-21 |